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Abstract

We show here how pure geometrical considerations with an absolute minimum of algebra
will yield the solution for the position of slanted planes defining the limits of acceptable sharp-
ness (an approximation valid for distant objects) for Depth-of-Field (DOF) combined with
SCHEIMPFLUG’s rule. The problem of Depth-of-Focus is revisited using a similar approach.
General formulae for Depth-Of-Field (DOF) are given in appendix, valid in the close-up range.
The significance of the circle of least confusion, on which all DOF computations are based,
even in the case of a tilted view camera lens and the choice of possible numerical values are
also explained in detail in the appendix.

Introduction

We address here the question that immediately follows the application of SCHEIMPFLUG’S rule:
when a camera is properly focused for a pair of object/image conjugated slanted planes (satisfying
“SCHEIMPFLUG’s rules of 3 intersecting planes”), what is actually the volume in object space that
will be rendered sharp, given a certain criterion of acceptable sharpness in the (slanted) image/film
plane?

Again the reader interested in a comprehensive, rigorous, mathematical study based on the ge-
ometrical approach of the circle of confusion should refer to Bob WHEELER’S work [1] or the
comprehensive review by Martin TAI [2]. A nice graphical explanation is presented by Leslie
STROEBEL in his reference book [5], but no details are given. We re-compute in the appendix
STROEBEL’S DOF curves and show how they are related to the classical DOF theory. The chal-
lenge here is to try and reduce the question to the absolute minimum of maths required to derive a
practical rule.

It has been found that, with a minimum of simplifications and sensible approximations, the
solution can be understood as the image formation through the photographic lens fitted with
an additional positive or negative “close-up” lens of focal length +H, where H is the hyperfocal
distance. This analogy yields an immediate solution to the problem of depth of field for distant
objects, the same solution as documented in Harold M. MERKLINGER’S work [3], [4], which
appears simply as an approximation of the rigorous model, valid for far distant objects.



1 Derivation of the position of slanted limit planes of accept-
able sharpness

1.1 Starting with reasonable approximations

Consider a situation where we are dealing with a pair of corresponding slanted object and im-
age planes according to SCHEIMPFLUG’s rule (fig. 4), and let us first assume a few reasonable
approximations:

1. first we neglect the fact that the projection of a circular lens aperture on film, for a single, out
of focus point object, will actually be an ellipse and not a circle. This is well explained by
Bob WHEELER [1] who shows, after a complete rigorous calculation, that this approximation
is very reasonable in most practical conditions.

2. second we consider only far distant objects; in other words we are interested to know the
position of limit surfaces of sharpness far from the camera, i.e. distances s or p much greater
than the focal length f. We’ll show that those surfaces in the limit case are actually planes,
the more rigorous shape of these surfaces for all object-to-camera distances can be found in
Bob WHEELER’s paper, in Leslie STROEBEL’s book [5], and here in the appendix.

3. finally we’ll represent the lens as a single positive lens element; in other words we neglect
the distance between the principal planes of the lens, which will not significantly change the
results for far distant objects, provided that we consider a quasi-symmetrical camera lens
(with the notable exception of telephoto lenses, this is how most view camera lenses are
designed).

1.2 A “hidden treasury” in classical depth-of-field formulae !

Let us restart, as a minimum of required algebra, with the well-know expressions for classical depth
of field distances, in fact the ones used in practice and mentioned in numerous books, formulae on
which are based the DOF engravings on classical manually focused lenses.

Consider an object AB perpendicular to the optical axis, let p; and p, the positions (measured
from the lens plane in O) of the planes of acceptable sharpness around a given position of the
object p.

It should be noted (see fig. 1) that the ray tracing for a couple of points outside the optical
axis like Dy and D] yields in the image plane A’ B’ an out-of-focus image of circular shape (not
an ellipse, as it could be considered at a first); this out-of-focus image is exactly the same as the
circular spot originated from Py; this is simply the classical property of the conical projection of
a circular aperture between two parallel planes. The out-of-focus spot near D' is centred on the
median ray D D; O D' D} that crosses the lens at its optical centre. This point will be important in
the discussion about transversal magnification factors for out-of-focus images.
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Figure 1. Depth-of-field distances sy, p; and s,, po for a given circle of confusion ¢

Assuming a given value for ¢, the diameter of the circle of confusion, p; and p, are identical
whether we consider AA’ on-axis or D D' off-axis and is given, for far distant objects, by
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In eq.(1), H is the hyperfocal distance for a given numerical aperture N and diameter of the
circle of confusion ¢, defined as usual as
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The previous expressions of eq. (1) are valid only for far-distant objects; readers interested by
more exact expressions, valid also for close-up situations, will find them below in the appendix.
Now let us combine eq.(1) with the well-known object-image equation (known in France as
DEescARTES formulae), written here with positive values of p and p’ (the photographic case)
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Combining equation (1) into (3) yields the interesting formula (4)
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which is nothing but the object-image equation for the image A’ located at a distance p’ of

. . 1 1
the lens centre O, but as seen through an optical system of inverse focal length (? + ﬁ) for

. 1 1 . . .
the near plane p; (point ;) and (? — ﬁ) for the distant plane p, (point P,). The expression
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(— + T is simply the inverse I3 of the focal length of a compound system made of the
1

original lens, fitted with a positive close-up lens of focal length H.
When you “glue” two thin single lens elements together into a thin compound with no air space,

their convergences (inverse of the focal length) should simply be added. Thus in a symmetric way
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original lens, fitted with a negative “close-up” lens of focal length —H.

1.3 A positive or negative “close-up” lens to visualise DOF at full aperture?
1.3.1 aclassical DOF rule revisited

Before we proceed to the SCHEIMPFLUG case, let us examine the practical consequence of the
additional close-up lens approach in the simple case of parallel object and image planes. We’ll
show how this additional lens element will allow us to revisit some well-know DOF rules (figure 2).

It is known to photographers that when a lens is focused on the hyperfocal distance H, all
objects located between H /2 and infinity will be rendered approximately sharp on film, i.e. sharp
within the DOF tolerance. Consider a lens focused on the hyperfocal distance and let us add a
positive close-up lens element of focal length +H. The ray tracing on figure 2 shows that the
object plane located at a distance H/2 is now imaged sharp on film if the lens to film distance
is unchanged. In a symmetric way, the same photographic lens fitted with a negative “close-up”
additional lens element of focal length —H will focus a sharp image on film for objects located at
infinity. The same considerations actually apply whatever the object to lens distance might be, in
this case formulae (4) are simply a more general rule valid for any object to lens distance p; the
result is eventually the same, i.e. the positions of acceptable sharpness p; and p, are located where
the film “would see sharp” through the camera lens fitted with a positive or a negative “close-up”
lens of focal length +H or —H.

1.3.2 DOF visualisation at full aperture??

It would be nice to be able to use this trick in practice to check for depth of field without stopping
the lens down to a small aperture. In large format photography, f/16 to f/64 are common, and the
brightness of the image is poor; it is difficult to evaluate DOF visually in these conditions. The
close-up lens trick would, in theory, allow to visualise the positions of limit planes of acceptable
sharpness at full aperture simply by swapping a +H or —H supplementary lens by hand in front
of the camera lens with the f-stop kept wide open.
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There is no reason why this could not work from an optical point of view. Unfortunately
classical close-up lenses are always positive and, to the best of my knowledge, my favourite opticist
round the corner will not have in stock eyeglasses with a focal length longer than 2 metres (a power
smaller than 0.5 dioptre). The shop will probably have all kinds of positive and negative lenses in
stock, but none, even on special order, will exhibit, say, a focal length of 10 metres (1/10 dioptre)
because this is quite useless for correcting eyesight.

In large format photography, the hyperfocal distance is always greater than 2 metres. For exam-
ple a large format lens, with a focal length of 150 mm, for which we consider appropriate a circle
of confusion of 100 microns has an hyperfocal distance smaller that 2 metres only when closed
down at a f-stop smaller than f/112. An impossible aperture, and moreover for such “pinhole” kind
of values, diffraction effects make the classical DOF model questionable.

Let us however see if this could work in 35mm photography. Shift and tilt lenses do exist for
35mm SLR cameras. Consider a moderate wide-angle of 35 mm focal length and assume that
the circle of confusion is chosen equal to the conventional and widely used value of 33 microns.
The hyperfocal distance is equal to 2 metres at f/18: this is a more realistic value. Those who use
shift and tilt lenses, 35mm focal length on a 35mm SLR can actually use a +0.5 or -0.5 dioptre
supplementary lens to get an idea of the DOF planes at f/16-f/22 without actually stopping down
the lens. And we’ll show below that this will be useful also for moderate tilt angles.

For large format photographers, actually the majority of users of tilts and shifts, the trick of
a positive or negative “close-up” lens will only be a very simple geometrical help to determine
where the slanted planes of acceptable sharpness in object space are located, as explained now.

1.4 Where Mr. Scheimpflug helps us again and gives the solution

When the film plane is tilted, the ray tracing is similar to the one on figs.1 and 2, but the object
plane is slanted (figures 3 and 4). We show now that even in this case, we can also consider
the camera lens fitted with a positive or negative close-up lens to determine the object planes of
acceptable sharpness.

1.4.1 alast argumentation without analytical calculations...

Now a subtle question that arises is: we now have the formula connecting the longitudinal position
of out-of-focus pseudo-images (actually: elliptical patches, close to a circle, when the tilt angle
is small) in the slanted film plane with the corresponding longitudinal position of a point source
in the object space. But what is the transversal magnification factor? To find this we need an
additional diagram (figure 3).

Due to basic properties of a geometrical projection of centre O, if we neglect the “ellipticity”
of the DOF spot, the centre of the out-of-focus image, A7, is aligned with the median ray A, O Aj,.
Hence, the transversal magnification factor for an out-of-focus image A} is the same as a for
a true image when AY is formed “sharp” through a compound lens fabricated by adding a thin
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Figure 3: The transversal magnification factor for an out-of-focus pseudo-image, p’/ps, is the same
as for a true image through a compound lens

supplementary lens to the camera lens. This transversal magnification factor (see fig. 3) is equal to
P’ /p2, the same value would be obtained for A} as a true image through the compound lens.

So both in longitudinal and transversal position the correspondence between the object space
and the image space for out-of-focus images is exactly the same as if viewed “sharp” through the
compound lens. Applying basic rules of true object-image formation we already know that the
image of a slanted plane is another slanted plane, we do not need any analytical proof to derive
what follows.

1.4.2 ...and Mr. Scheimpflug gives us the solution without any calculation!!

As a consequence, without any further calculations we apply SCHEIMPFLUG’s rule to the com-
pound optical system and we conclude that the limit surfaces of acceptable sharpness for dis-
tant objects are the slanted conjugate planes of the film plane with respect to a compound,
thin lens centred in O, with a focal length equal to f; (for p;) or f, (for py), and that all
those planes G1 P, and G, P, intersect together in S with the slanted object plane AS and the
slanted SCHEIMPFLUG-conjugated image plane SA’ as on fig.4.

To actually define where those planes are located, we simply have to impose that they should
cut the optical axis at a distance p; (point P;) or p, (point P,), respectively. Then, simple geometric
considerations on homothetic triangles P,AB; vs. P,OS as well as B;AP; vs. SOP; combined
with eq.1 yield the interesting and most simple final result: with ~ = OS, both distances h; and
ho are equal to

ho = hy = h% (5)
Now consider a plane GGG, perpendicular to the optical axis and located at the hyperfocal
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Figure 4: Position of slanted planes of acceptable sharpness, for distant objects, according to this
simplest model: fit the original lens with “close-up” lenses of focal length (+H)



distance H from the lens plane (fig.4). Considering homothetic triangles G,GS vs. B, AS and
GG,S vs. AB,S, we eventually get

GG, =GGy =h (6)

a nice result given by Harold M. MERKLINGER in ref.[4]. Note that for far distant objects,
the image point A’ on the optical axis is located very close to the image focal point F”; thus the
distance A, hard to estimate in practice, can be computed from the “camera triangle” OS A’ from

the focal length f and the estimated tilt angle OSA’ as: tan(O@’) ~ % For small tilt angles

tan(O/Sjél’) r~ sin(OTS?l’), which eventually yields the same result as in reference [4], where the
diagram is drawn with a reference line perpendicular to the film plane (hence a sine instead of a
tangent) instead of the lens plane like here.

2 Application to the problem of Depth-of-Focus

Another classical photographic problem is the determination of Depth-of-Focus. The question is:
for a given, fixed, object plane, what is the mechanical tolerance on film position in order to get a
good image, within certain acceptable tolerances? The following (figure 5) yields the solution, at
least to start with the case of an object plane perpendicular to the optical axis and an image plane
parallel to the object plane.

If p’ denotes the film position for an ideally sharp image of an object plane at a distance p, the
two acceptable limit film plane positions p) and p/, are given by

p'1=p’(1+£);p'z=p'<1—£> )

In order to keep the derivation as simple as possible and keep the equivalence with a true
optical image formation valid, we need an additional but reasonable approximation, namely that
the hyperfocal distance H is much greater that the focal length f. This is what happens in most
cases and is argumented in the appendix. Within this approximation, it is found (see details in the
appendix), not so surprisingly, that the limit positions p; and p, as defined above for the Depth-of-
Field problem are approximately the optical conjugates of the positions p and p;, of the Depth-of-
Focus problem through the photographic lens of focal length f, as given by DESCARTES formula

1 1 1 1 1 1
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Combining this eq.(8) with the transversal magnification formula p’ /p or p,/p, still the same
for pseudo-images (the centre of out-of-focus light spots) as for real images, we find that in the
general case of a slanted object plane, for far distant objects (so that equation (1) is valid), the

limit positions for the image planes in the Depth-of-Focus problem are given by two slanted
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Figure 5: A ray tracing similar to the ones used in the Depth-of-Field problem yields the solution
of the Depth-of-Focus problem

planes, those slanted image planes of acceptable sharpness being the optical conjugates (through
the lens of focal length f) of the slanted object planes in the Depth-of-Field problem.

Hence, applying SCHEIMPFLUG’S rule, we conclude again that those slanted planes intersect
together at the same point S (see fig. 6)

Appendix : depth of field formulae also valid for close-up, rea-
sonable limits for the choice of the circle of confusion c

Depth-of-Field formulae valid for close-up

From NEWTON’s object-image formulae s x s’ = f x f = f? itis not too difficult (although rather
lengthy) for an object AB perpendicular to the optical axis to derive more general formulae giving
the position p; and p, of the planes of acceptable sharpness around a given position of the object p
(as measured from the lens plane, see fig.1).

Those exact formulae (9) and (10) are used in a html-javascript [7] and a downloadable spread-
sheet [8] on Henri Peyre’s French web site. Another derivation, strictly equivalent, is proposed by
Nicholas V. Sushkin [6] offering an in-line graph.

There is however a restriction: those formulae will be also valid for a thick compound lens
where the pupil planes are located not too far from the nodal planes identical to principal planes
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P1 and P’1 are optically conjugated through the camera lens of focal length f
same for P2 and P'2, when H >>f, and p >> f

Figure 6: For a slanted object plane AC located far from the lens, and when the hyperfocal distance
is much greater than the focal length, the image planes of acceptable sharpness SP; and SP; in
the Depth-of-Focus problem are the optical conjugates of the slanted Depth-of-Field object planes

S P, and S P, through the camera lens
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in air. This is the case obviously for a single lens element or a cemented doublet, but also for quasi-
symmetric view camera lenses; however for asymmetric lenses or more generally speaking for a
lens where pupil planes are far from nodal planes, an extreme case being, for example, so-called
telecentric lenses, this classical depth-of-field approach is no longer valid. Another ray tracing
diagram has to be taken into account; of course depth-of-field will increase when stopping down
such a lens, but this will not be quantitatively described by equations (9) or (10).

Assuming a given value for ¢, the diameter of the circle of confusion, a derivation not shown
here yields the following (and surprisingly simple) result, which is presented in a slightly different
but strictly equivalent form by Nicholas V. Sushkin on his web site [6]

1 1 1 1 1 1
m p H P p2 p H D
these formulae can be also written as

_ H.p o H.p (10)
PTEH - TH-0-

where (see fig.1) f is the focal length of the lens (here considered as a single, positive, thin lens
element) p the position (measured from the lens plane O) of the object plane AB, assumed to be
perpendicular to the optical axis.

Then p; is the position of the near limit plane of sharpness and p, the position of the far limit
plane of sharpness. It should be noted in eqs.(9), that all distances p, p;, and p, are (positive)
distances measured with respect to the lens plane plane O. Here, for a thin positive lens, O is
identical to the principal planes. No problem with a thick compound lens if pupillar planes are
not too far from principal planes, re-starting from the single thin lens element you just have to
“separate” “virtually” the object side from the image side by a distance equal to the (positive of
negative) spacing between principal planes.

Definition of the “true” hyperfocal distance

Let us first point out that there is a subtle difference in what appears as the “true” hyperfocal
distance when exact formulae are used. If one tries in (9) or (10) to find the proper distance p for
which p, goes to infinity, the value of H + f is found instead of H in the conventional approach.
In this case, the near limit of acceptable sharpness will be Hy,.,. = (H + f)/2. In practice as soon
as H is much greater than 5f, the difference is not meaningful. It could be possible to re-write
equations (9) and (10) as a function of H,,.,., but we eventually prefer to denote by hyperfocal

distance the well-accepted value H = IS since it naturally comes out of the computation, and as

it is referred to in many classical photogrécphic books.

With this assumption on pupillar planes, the formulae given in eq.(9) are derived from NEw-
TON’s formulae within the only, non-restrictive, reasonable approximation that the circle of con-
fusion ¢ (in the range of 20 to 150 microns) is smaller than the diameter of the exit pupil f/N.
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Taking ¢ < 0.5 f/N sounds reasonable. For example with f = 100mm, the aperture diameter
a = f/N should be smaller than f/100 to be smaller than one millimetre, whereas conventional
values for ¢ never exceed 0.5mm.

It is also possible to think again about the significance of the hyperfocal distance H by re-
introducing the value a of the lens aperture diameter, « = f/N. The following expression is
obtained: H/f = a/c, in other words the ratio between the hyperfocal distance H and the focal
length f is equal to the ratio between the lens aperture diameter a and the circle of confusion c. In
most practical cases, H is much greater than f. Considering a limit case where H could be close
to f, although acceptable from a geometrical point of view, would yield values for ¢ that are too
big to be acceptable: for example if ¢ can be as big as a/2, equivalent to H = 2.f, the resultant
image quality will be terrible.

Let’s put in some numerical data to support this idea. Consider a standard focal length f equal
(by conventional definition of a standard lens) to the diagonal of the image format; assume that the
format is square to simplify. The image size will be equal to 0.7f by 0.7f (diagonal size = 1.4 times
the horizontal or vertical size of the square). If we assume that ¢ = a/2 = f/(2.N), the number of
equivalent image dots will be only 2 x 0.7 x N = 1.4 x N both horizontally or vertically. Even at
/90, N = 90 this yields a total number of image points smaller than 20,000 (128 x 128)!!l Even
if this “un-sharp” out-of-focus image concerns only a small fraction of the whole image, such a
terrible image quality is clearly unacceptable.

Now that we have shown that it is necessary to limit the upper value for ¢ for image quality
reasons, this upper limit being somewhat arbitrary, lets us demonstrate that there is also an absolute,
unquestionable, minimum value for ¢ due to diffraction effects.

This pure geometrical DOF approach is valid as long as diffraction effects are neglected. Con-
sidering a value equal to N microns (1.22 x N x A, with A = 0.8um in the worst case) for a
diffraction spot in the image plane, the other reasonable condition is ¢(in microns) < Nmicrons.
For example in medium 6x6cm format with ¢ = 50um, f/32 is a reasonable f-stop whereas /64 is
irrelevant to the present purely geometrical approach. In 4”x5” format taking ¢ = 150um, /128
will be the smallest non-diffractive aperture for depth-of-field computations.

In macro work at 1:1 ratio (2f-2f), DOF does not depend on the focal length

With all above-mentioned assumptions, equation (9) is valid even for short distances p as in macro
work, with p > f of course to get a real image. This will be in fact irrelevant to our purpose to
find a simple expression and graphical interpretation for far-distant objects, but is of practical use
in macro- and micro-photography. For example when p = 2f at 1:1 magnification ratio, the total
depth of field is given by p, — p1 = 4.N.c, and is totally independent from the focal length, a
well-know result.
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A numerical computation in agreement with Stroebel’s diagrams

Unfortunately there is probably nothing really simple in terms of understanding geometrically
depth-of-field zones for close-up when the film plane is tilted at a high angle with respect to the
optical axis.

From eq.(9) we easily derive a limit form valid for far distant objects, i.e. p much greater than

fi.e. p> f. Inthis case we can write that f/p < 1and 1 — S ~1, Hyye = H+ f ~ f. This
p

yields the well-known expressions of eq.(2).

To go a little further, a numerical computation and graphical computer plot (fig.7) is required.
However it is interesting to find the origin of the diagram presented in STROEBEL’S excellent
reference book [5], stating that limit planes of acceptable sharpness intersect all in the same pivot
point P¢ located not in the lens plane (like in our approximate model here) but also in the slanted
object plane AS, and one focal length ahead of the “regular” Scheimpflug’s pivot point S (figure 7).
Without any calculation when p decreases down to the limit value p = f, it is easy to see from
eq.(9) that both values p; and p, become equal to f this defining the pivot point Pf.

From the computed diagram, here plotted the particular value of ¢ = f/1000 (¢ = f/1750
is mentioned sometimes and is more stringent), the simplified approach of the “plus or minus H”
close-up lens (yielding slanted planes at large distances p) still holds remarkably well at f/16, even
in the macro range. However at f/64 in the close-up range the exact calculation will be required,
at least for those inclined to the highest degree of precision, the approximate model being still an
excellent starting point to manually refine the focus for slanted SCHEIMPFLUG’S planes. This has
been computed with a very simple gnupl ot [9] freeware script, and will be gladly mailed to all
interested readers.

2.1 Depth-of-Focus formulae

Starting from equation (7) defining depth-of-focus limits without approximation, and combining
with the exact DOF formulae (9) and (10) yields a complicated expression

cr=i 0+ () <H(lr];2+f))) )
1 1 1 2
Fp_f?(”(l‘g) (H(If—f))) (12

which would be useless except that its limit form when H >> f is nothing but equation (8),
the additional term inside the bracket vanishing as f2/H?. In most photographic situations, with a
circle of confusion smaller than f /1000, the correcting factor is also of a magnitude smaller than
1/1000. Equation (11) is actually very close to DESCARTES formula (8) connecting p; to p} and p
to pl,, as long as the basic DOF equation (1) is valid, namely when p > f a common photographic
situation except in macro work.

14



/16 slanted objéct plané |
/ f/64

slanted
image plane

exact calculation @ /64
-2 exact calculation @ f/16
[] approx model @ f/64
+ approx model @ f/16
L L L L

40 30 20 10 5 1

Distance measured from the axis (times f)

exact calculation @ f/64
exact calculation @ /16

+ approximate model

5 4 3 2 1 0 1
Object-lens Distance (times focal length f) for c=f/1000

Distance measured from the axis (times f)
|
o1

Figure 7: A better determination of slanted object planes of acceptable sharpness, with a pivot
point located one focal length ahead of the lens, according to Stroebel (ref.[5]) and re-calculated
numerically from egs. (9)
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Equation (7) yields the expression for the total depth of focus p) — p}, equal to 2p' f/H. Subti-
tuing H by its value f2/(Nc¢) yields the expression 2Ncp’/ f. In the case of the 1:1 magnification
ratio (2f-2f), p’ = 2f, the same value for depth-of-focus or depth-of-field is found i.e. 4N ¢, which
makes sense considering the perfect object-image symmetry at 1:1 ratio.

In the practical case of far distant objects, p’ will be very close to one focal length f; in this
case the total depth-of-focus is found close to 2/N¢. Surprisingly this result does not depend on
the choice of focal length f but only the conventional value for c. In other words, for a given film
format or a given camera (35mm, medium format, large format) if the same circle of confusion is
chosen for all lenses covering a given format with the same camera body, the conclusion, under
those assumptions, is that the choice of focal length has no influence on the total depth of focus for
far distant objects.

However, in order to peacefully conclude on a potentially controversial subject, the conven-
tional value chosen for ¢ increases somewhat proportionally to the standard focal length when
changing from 35 mm to medium and large formats; in a sense it can also be said that depth-of-
focus is larger in large format than in small format. How this “large format advantage” actually
helps getting better images in large format for given mechanical manufacturing tolerances or film
flatness cannot be simply inferred without deeper investigations.
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